Милитаристские круги многих капиталистических стран с целью наращивания мощи своих флотов постоянно пополняют их состав новыми подводными лодками. С ростом общей численности подводною флота этих стран и активизацией его деятельности в морях и океанах участились случаи аварий и гибели подводных лодок. Так, затонули в 1963 и 1968 годах американские подводные лодки «Трешер» и , в 1966 году западногерманская лодка «Хай», в 1968 и 1970 годах французские «Минерва» и «Эвридика», а в 1968 году израильская «Дакар».

Чтобы избежать несчастных случаев и аварий или снести их к минимуму, непрерывно совершенствуются средства обеспечения живучести подводных лодок и безопасности их экипажей. Для повышения живучести лодок дублируют запирающие устройства трубопроводов, проходящих сквозь прочный корпус, в частности системы продувания балластных цистерн и осушения отсеков, а также увеличивают количество водонепроницаемых переборок.

Некоторые подводные лодки имеют сбрасываемый аварийный балласт для придания им дополнительной плавучести в аварийной обстановке; ведутся работы по применению химических газогенераторов для продувания балластных цистерн на любых глубинах. Совершенствуется конструкция горизонтальных рулей, позволяющих лодке всплывать при движении за счет динамической подъемной силы даже при общей отрицательной плавучести. Повышается надёжность различных аварийных систем и устройств подводных лодок. Лодки оснащаются современными средствами наблюдения и связи для сбора информации об окружающей обстановке, создаются надежные средства и способы спасения личного состава с лодок, потерпевших аварию.

Средства обнаружения и обозначения местонахождения подводных лодок, потерпевших аварию, в настоящее время применяются во многих странах. Так, в разработан аварийный буй, автоматически всплывающий с затонувшей лодки и поднимающий на поверхность моря кабель длиной до 6000 м. и телефонный аппарат для связи. Буй оснащен надувным баллоном с радиолокационным отражателем, позволяющим обнаруживать его корабельными и самолетными РЛС. Он всплывает при незначительном сотрясении или ударе корпуса лодки, а также при погружении её в случае аварии ниже назначенной (допустимой) глубины.

Во Франции создан буй, имеющий двойной корпус из пластических материалов. Он оснащён миниатюрным радиопередатчиком, подающим сигналы SOS продолжительностью 1 мин каждые 10 мин. Корпус буя окрашивают фосфоресцирующим составом, чтобы его можно было обнаруживать в темное время суток. Буй связан с подводной лодкой нейлоновым тросом с телефонным проводом.

По данным зарубежной печати, во Франции разработана система из трех буёв, один из которых предназначен для сигнализации, а два других — для облегчения подъема затонувшей лодки. Командир подводной лодки включает механизм, освобождающий буи, если лодка не может всплыть на поверхность после аварии. В особых случаях, когда лодка ложится на грунт с большим дифферентом на нос или на корму, маятниковый выключатель автоматически прерывает цепь, питающую электромагнитные крепления, удерживающие буи на палубе, и они всплывают на поверхность моря.

В Канаде создан автоматический сигнально-спасательный буй, который при затоплении лодки всплывает на поверхность. Одновременно приводятся в действие радиопередатчик, передающий в эфир сигналы бедствия, проблесковый сигнальный огонь, устройство для образования на воде цветного маркерного пятна, а также выпускается жидкость для отпугивания акул. Корпус буя ярко-оранжевого цвета изготовлен из стекловолокна и заполнен пенопластом для увеличения запаса плавучести на случай повреждения. Буй оснащен радиолокационным отражателем и радиоэлектронным оборудованием.

В Великобритании на подводных лодках в целях облегчения поиска при их гибели или аварии устанавливается по два аварийных буя с двойным корпусом цилиндрической формы из алюминия. Внутри размещены КВ и УКВ передатчики, аккумуляторная батарея (рассчитана на 72 ч. непрерывной работы) и сигнальный фонарь. При всплытии буя на поверхность автоматически выдвигается штыревая антенна, и КВ передатчик начинает передавать в телеграфном режиме сигналы бедствия на частоте 4,3 МГц через каждые 2 мин. УКВ передатчик передает тонально-модулированные сигналы длительностью 2 — 3 с. для привода самолетов. Синхронно с УКВ передатчиком включается фонарь. Дальность действия КВ передатчика 50 миль, УКВ — 20 миль.

В ВМС Великобритании установлено, что если в течение часа назначенного времени лодка не дала сигнал о всплытии, считается, что она потерпела аварию, и начинается её поиск.

Все подводные лодки ВМС Швеции оснащены гидроакустическими маяками, начинающими работать в случае аварии.

Средства спасения личного состава подводных лодок подразделяются на индивидуальные (спасательные жилеты, индивидуальные дыхательные аппараты) и групповые (спасательные капсулы, водолазные колоколы, всплывающие отсеки и глубоководные спасательные аппараты).

В случае аварии лодки её личный состав выходит через торпедные аппараты или шлюзовые камеры.

Спасательная система, разработанная в ВМС Великобритании, состоит из двух шлюзовых камер (по камере в носу и корме лодки), устройства подачи воздуха для дыхания и спасательного костюма (жилета). Камера рассчитана на одного человека, оборудована воздушным коллектором, устройствами осушения и затопления, а также приводом дистанционного открытия люка шлюзовой камеры.

Подводник в спасательном костюме входит в шлюзовую камеру и подсоединяется к воздухопроводу, затем закрывает нижний люк, и камера заполняется водой. Сечение трубопровода подачи воды в камеру выбрано таким образом, что давление в ней удваивается каждые 4 с. независимо от величины забортного давления. В период заполнения камеры водой система наддува подает в подкостюмное пространство сжатый воздух и создает давление на 0,7 кг/кв.см. больше, чем в камере. В первую очередь поддувается жилет, являющийся частью спасательного костюма, и во вторую — объёмный капюшон-шлем, снабженный в нижней части двумя стравливающими клапанами (давление срабатывания 0,035 кг/кв.см.). После уравнивания давления в камере с забортным открывается верхний люк, автоматически разобщается магистраль наддува (свободные штуцер и шланг наддува автоматически герметизируются) и подводник, обладая положительной плавучестью (27 — 37 кг), всплывает со скоростью 2,7 м/с. Он дышит воздухом, находящимся в капюшоне, и поэтому давление в его легких уравнивается с давлением окружающей среды. Излишки воздуха, расширяющегося по мере всплытия под капюшоном стравливаются через клапаны в воду. После всплытия подводник откидывает капюшон с головы на спину и с помощью надувного жилета удерживается на поверхности воды.

Время, необходимое для входа в шлюзовую камеру и закрытия нижнего люка, составляет 30 с., для заполнения камеры до сравнивания давления с забортным 55 с., на открытие верхнего люка 4 с., на всплытие 40 — 60 с., на осушение камеры 60 с. и на проверку готовности к следующему циклу 60 с. Для подготовки личного состава используется специальная тренировочная башня.

Такая спасательная система благодаря простоте освоения нашла широкое применение в ВМС европейских стран. В Великобритании и Норвегии подводники на тренировках отрабатывают всплытие с глубин 20—30 м. и более. Она также принята в ВМС , где каждый член экипажа лодки ежегодно тренируется по освоению метода выхода из нее. Члены экипажа снабжаются индивидуальными радиопередатчиками, которые позволяют быстро определить их местонахождение на поверхности моря.

Одна из фирм ФРГ разработала для спасения экипажей затонувших лодок специальную капсулу сферической формы, которая размещается сверху подводной лодки в полусферической выемке (рис. 1). Капсула имеет в верхней части выходной люк, а в нижней — два люка, через которые личный состав лодки входит в капсулу из двух отсеков, разделенных прочной переборкой. Для герметического соединения капсулы с прочным корпусом лодки имеется манжетное уплотнение, а также специальное крепежное устройство.

Спасательная капсулаРис. 1. Спасательная капсула: 1 — балластный отсек; 2 — корпус плавучести; 3 — соединительно-разъединительное устройство; 4 — размещение капсулы на подводной лодке

Во время плавания под водой капсула прижимается к корпусу еще гидростатическим давлением. Перед подъемом капсулы на поверхность задраиваются все люки, разъединяется специальное крепежное устройство, пространство между люками лодки и капсулы заполняется водой, благодаря чему устраняется гидростатистическое давление на капсулу и она с личным составом самостоятельно всплывает на поверхность моря (положительная плавучесть 300 кг.). В капсуле диаметром 2,1 м. могут разместиться 24 человека на сиденьях в два яруса. Если экипаж подводной лодки до перехода в капсулу находился под давлением, то в ограниченном объёме она может использоваться и как декомпрессионная камера. Капсула рассчитана на то же максимальное давление, что и подводная лодка.

Во Франции разработано устройство группового спасения экипажей подводных лодок с больших глубин, представляющее собой металлический кессон, закрепленный на палубе так, что его можно легко отделить. В нижней части кессон имеет люк для перехода личного состава из лодки, а в верхней — для выхода наружу после всплытия на поверхность моря. Потерпевший аварию экипаж из него выходит, а кессон остается на плаву и по нему определяется местонахождение затонувшей лодки. Скорость всплытия регулируется с помощью закрепленного на подводной лодке троса и установленной на кессоне лебедки.

В ВМС США изучается возможность создания подводной лодки модульной конструкции, состоящей из нескольких необитаемых и одного обитаемого отсека (автономный модуль), в котором расположится экипаж и будут размещены средства управления всеми системами. Обитаемый отсек, обладающий положительной плавучестью и высокой прочностью, должен крепиться в носовой части лодки. При затоплении лодки отсек сможет отделиться от неё, используя электромагнитные, гидравлические или подрывные устройства, и всплыть на поверхность с помощью собственной двигательной установки. Кормовая переборка отделяющегося носового отсека и носовая переборка основного корпуса лодки должны иметь фиксированные запоры (замки), которые позволят вновь соединить основной корпус лодки с её носовым отсеком.

Зарубежные военно-морские специалисты считают, что существующие средства спасения личного состава стали недостаточно эффективными. Поэтому возникла потребность в разработке специальных средств, в частности глубоководных спасательных аппаратов.

Глубоководные спасательные аппараты (ГСА) начали строить в США после гибели атомной подводной лодки «Трешер». Первоначально предполагалось иметь шесть глубоководных спасательных аппаратов. Однако в связи с большой стоимостью (строительство первого из них обошлось в 41 млн. долларов) построены и прошли испытания в море всего лишь два таких аппарата DSRV-1 и DSRV-2 (Deep Submergence Rescue Vehicle).

Основные тактико-технические данные аппаратов DSRV (рис. 2) длина 15,3 м., диаметр каждой из трех сфер прочного корпуса 2,4 м., вес с полной загрузкой 63 т., пустого 35 т., скорость подводного хода 5 узлов, глубина погружения 1500 м. (DSRV-2 на испытаниях в 1973 году погрузился на глубину 1609 м.), экипаж три человека, может принять одновременно с затонувшей лодки 24 человека.

Схема размещения основных систем и устройств глубоководного спасательного аппарата DSRV
Рис 2. Схема размещения основных систем и устройств глубоководного спасательного аппарата DSRV: 1 — поворотная насадка; 2 — гребной электродвигатель; 3 — блок управления водометными движителями; 4 — дифферентная цистерна; 5 — цистерна главного балласта; 6 — заместительная цистерна; 7 — уравнительная цистерна: 8 — насос для перекачки воды между бортовыми уравнительными цистернами; 9 — бортовые уравнительные цистерны; 10 — ограждение входного люка; 11 — обтекатель гидролокационной станции; 12 — водомётный движитель; 13 — аккумуляторные батареи; 14 — тороидальная цистерна; 15 — механический манипулятор; 16 — люк для перехода личного состава; 17 — ртутная цистерна; 16 — переходная шахта; 19 — гидроэнергетичесиий блок; 20 — резервуар со сжатым воздухом; 21 — блок управления системой гидравлики; 22 — карданов подвес поворотной насадки

В каждом отсеке глубоководного спасательного аппарата DSRV имеется отдельная система жизнеобеспечения. В носовой сфере (отсек управления, где размещаются командир ГСА и его помощник) она рассчитана для обслуживания двух человек в течение 12 ч. при суточном резерве. Средняя и кормовая сферы (каждая предназначена для размещения врача и 12 человек с затонувшей лодки) рассчитаны на обслуживание 13 человек в течение 2 ч. при суточном резерве. В отсеках спасательного аппарата DSRV предусмотрены также аварийные дыхательные системы, работающие по замкнутому циклу: в носовой — для обслуживания двух человек в течение 6 ч., в средней и кормовой — по 13 человек в течение 2 ч.

Аппарат типа DSRV может стыковаться с затонувшей лодкой при её крене до 45° (комингс-площадка предварительно очищается от обломков с помощью механического манипулятора). Он оснащен шестью гидроакустическими станциями, двумя ТВ камерами и светильниками, которые используются при поиске лодки, сближении с ней и стыковке. Для быстрой переброски его в район базирования атомных подводных лодок может использоваться транспортный самолет С-141, а дальше к месту аварии аппарат будет транспортироваться на атомной лодке или на спасательном судне ASR.

В ВМС США построены два спасательных судна ASR21 «Пиджен» к ASR22 «Ортолан», которые могут нести на борту по два ГСА типа DSRV. Эти суда оснащены необходимыми грузоподъемными устройствами, декомпрессионными и транспортными камерами, специальным якорно-швартовным устройством и имеют в корпусе сквозной вырез для спуска и подъема ГСА.

В Нидерландах разработан ГСА, который может погружаться на глубину 610 м, стыковаться с лежащей на грунте лодкой с креном до 50° и принимать с неё одновременно 15 подводников. В отличие от DSRV глубина погружения его намного меньше. Он имеет упрощённую систему управления и в связи с этим значительно меньшую стоимость (2,7 млн. долларов). Для стыковки с подводной лодкой используется спасательная капсула с двумя стыковочными «юбками», одна из которых предназначена для стыковки с транспортирующей лодкой.

В Японии построен ГСА «Тихиро» (рис. 3), имеющий следующие тактико-технические данные: длина 11 м., ширина 3,2 м., высота корпуса 3,2 м., высота с учётом стыковочного комингса шлюзовой камеры 3,6 м., водоизмещение 30 т., глубина погружения 600 м., скорость подводного хода 3 узла, экипаж 2 человека, может принять на борт одновременно 12 человек. Прочный корпус аппарата состоит из трёх отсеков сферической формы, соединённых вертикальными цилиндрическими секциями с водонепроницаемыми люками (носовой отсек — командный, средний — шлюзовой и кормовой — для размещения спасенных подводников).

Японский глубоководный спасательный аппарат «Тихиро»Рис. 3. Японский глубоководный спасательный аппарат «Тихиро»

По заказу ВМС Швеции фирма «Коккумс» (Мальме) совместно с фирмой «Комекс» (Марсель, ) разработала глубоководный спасательный аппарат URV (Underwater Rescue Vehicle). В июне 1971 года фирма «Коккумс» получила заказ на строительство этого аппарата, который планирует передать ВМС Швеции в конце 1977 года. Считают, что его стоимость вместе с декомпрессионной камерой составит 2,7 млн. долларов.

ГСА URV (рис.4) имеет следующие тактико-технические данные: длина 13,5 м., ширина 4,3 м., высота 3,9 м., осадка 2,9 м., водоизмещение 49 т., наибольшая скорость хода 3 узла, допустимая скорость буксировки 10 узлов, наибольшая глубина погружения 460 м. (предельная глубина Балтийского моря), глубина проведения спасательных работ до 300 м., экипаж пять человек (два оператора, инженер и два водолаза), принимает одновременно на борт 25 человек; автономность по системам жизнеобеспечения 40 ч., по средствам движения под водой 10 ч. (при скорости хода 2 узла); шесть гребных винтов и подруливающих устройств. Все оборудование, необходимое для спасательных работ, закреплено снаружи прочного корпуса и легко доступно для водолазов.

Размещение отсеков на глубоководном спасательном аппарате URV
Рис. 4. Размещение отсеков на глубоководном спасательном аппарате URV

Корпус спасательного аппарата разделен на отсеки: управления, спасательный, вспомогательных механизмов и водолазный. Все они расположены по длине аппарата и соединены проходными люками. По три входных люка имеется в отсеке управления, спасательном и водолазном. Кроме того, спасательный отсек имеет люк в нижней своей части, рядом с которым размещены лебёдка, ножницы для резки стального троса и ТВ камера. Этот люк служит для стыковки с лодкой, потерпевшей аварию. Водолазный отсек оборудован специальным люком для выхода водолазов в поду. Все отсеки имеют систему регенерации воздуха.

ГСА URV предполагают разместить в водолазном центре южнее Стокгольма и в случае аварии подводной лодки транспортировать на специальном автотрейлере в район аварии. Там его спустят на воду и отбуксируют непосредственно к месту аварии, где он погрузится для поиска подводной лодки по сигналам гидроакустического маяка, которым оснащены все лодки ВМС Швеции. Обнаружив лодку и приблизившись к ней на 100 м., оператор переключает гидроакустическую станцию на активный режим работы. На расстоянии 2—10 м., когда установится визуальный контакт с подводной лодкой, с помощью манипуляторов (или двух водолазов) трос закрепится к её спасательному люку. После этого ГСА опустится на люк и стыкуется с лодкой, её экипаж перейдет в спасательный аппарат. Затем он отделится от подводной лодки, всплывет и его отбуксируют в базу. Рассчитывают, что всего спасательная операция будет длиться 40 ч., из которых 10 ч. — буксировка, 10 ч. — стыковка и принятие экипажа лодки, 10 ч. — обратная буксировка и 10 ч. — резерв. В случае невозможности стыковки с подводной лодкой ГСА будет находиться над ней, а экипаж методом свободного всплытия перейдёт в спасательный аппарат. Для предотвращения кессонного заболевания давление в отсеке аппарата, в который поступает личный состав лодки, будет уравниваться с давлением воды за бортом ГСА.

Добавить комментарий